Monday, August 25, 2008

Disk access and file systems


Access to files stored on disks is a central feature of all operating systems. Computers store data on disks using files, which are structured in specific ways in order to allow for faster access, higher reliability, and to make better use out of the drive's available space. The specific way files are stored on a disk is called a file system, and enables files to have names and attributes. It also allows them to be stored in a hierarchy of directories or folders arranged in a directory tree.

Early operating systems generally supported a single type of disk drive and only one kind of file system. Early file systems were limited in their capacity, speed, and in the kinds of file names and directory structures they could use. These limitations often reflected limitations in the operating systems they were designed for, making it very difficult for an operating system to support more than one file system.

While many simpler operating systems support a limited range of options for accessing storage systems, more modern operating systems like UNIX and Linux support a technology known as a virtual file system or VFS. A modern operating system like UNIX supports a wide array of storage devices, regardless of their design or file systems to be accessed through a common application programming interface (API). This makes it unnecessary for programs to have any knowledge about the device they are accessing. A VFS allows the operating system to provide programs with access to an unlimited number of devices with an infinite variety of file systems installed on them through the use of specific device drivers and file system drivers.

A connected storage device such as a hard drive will be accessed through a device driver. The device driver understands the specific language of the drive and is able to translate that language into a standard language used by the operating system to access all disk drives. On UNIX this is the language of block devices.

When the kernel has an appropriate device driver in place, it can then access the contents of the disk drive in raw format, which may contain one or more file systems. A file system driver is used to translate the commands used to access each specific file system into a standard set of commands that the operating system can use to talk to all file systems. Programs can then deal with these file systems on the basis of filenames, and directories/folders, contained within a hierarchical structure. They can create, delete, open, and close files, as well as gather various information about them, including access permissions, size, free space, and creation and modification dates.

Various differences between file systems make supporting all file systems difficult. Allowed characters in file names, case sensitivity, and the presence of various kinds of file attributes makes the implementation of a single interface for every file system a daunting task. While UNIX and Linux systems generally have support for a wide variety of file systems, proprietary operating systems such a Microsoft Windows tend to limit the user to using a single file system for each task. For example the Windows operating system can only be installed on FAT or NTFS, and CDs and DVDs can only be recorded using UDF or ISO 9660

Tuesday, August 19, 2008

Demographic profile


A demographic or demographic profile is a term used in marketing and broadcasting, to describe a demographic grouping or a market segment. This typically involves age bands (as teenagers do not wish to purchase denture fixant), social class bands (as the rich may want different products than middle and lower classes and may be willing to pay more) and gender (partially because different physical attributes require different hygiene and clothing products, and partially because of the male/female mindsets).

A demographic profile can be used to determine when and where advertising should be placed so as to achieve maximum results. In all such cases, it is important that the advertiser get the most results for their money, and so careful research is done to match the demographic profile of the target market to the demographic profile of the advertising medium.

A good way to figure out the intended demographic of a television show, TV channel, or magazine is to study the ads that accompany it. For example, in the United States the television program The Price is Right most frequently airs from 11 a.m. to Noon. The commercials on it (besides the use of product placement in the show itself) are often for things like arthritis pain relievers and diapers. This indicates that the target demographics are senior citizens and parents with young children, both of which would be home at that time of day and see that show. Another example would be MTV, for it has many ads with digital audio players indicating that the channel is targeted to young adults and teenagers and/or fans of music.

Monday, August 11, 2008

DivX


DivX is a brand name of products created by DivX, Inc. (formerly DivXNetworks, Inc.), including the DivX Codec which has become popular due to its ability to compress lengthy video segments into small sizes while maintaining relatively high visual quality. The DivX codec uses lossy MPEG-4 Part 2 compression, also known as MPEG-4 ASP, where quality is balanced against file size for utility. It is one of several codecs commonly associated with "ripping", whereby audio and video multimedia are transferred to a hard disk and transcoded. Many newer "DivX Certified" DVD players are able to play DivX encoded movies, although the Qpel and global motion compensation features are often omitted to reduce processing requirements. They are also excluded from the base DivX encoding profiles for compatibility reasons.

The "DivX" brand is distinct from "DIVX" (Digital Video Express), an unrelated attempt by the U.S. retailer Circuit City to develop a DVD rental system requiring special discs and players. The winking emoticon in the early "DivX ;-)" codec name was a tongue-in-cheek reference to the failed DIVX system. The DivX company then adopted the name of the popular DivX ;-) codec (which was not created by them), dropped the smiley and released DivX 4.0, which was actually the first DivX version (that is, DivX ;-) and DivX are two different things created by different people, the former is not an older version of the latter). The DivX name is its trademark. It is pronounced DIV-ex.

Monday, August 04, 2008

Sporophyte

All land plants, and some algae, have life cycles in which a haploid gametophyte generation alternates with a diploid sporophyte, the generation of a plant or alga that has a double set of chromosomes. A multicellular sporophyte generation or phase is present in the life cycle of all land plants and in some green algae. For common flowering plants (Angiosperms), the sporophyte generation comprises almost their whole life cycle (i.e. whole green plant, roots etc), except phases of small reproductive structures (pollen and ovule).

The sporophyte produces spores (hence the name), by meiosis. These meiospores develop into a gametophyte. Both the spores and the resulting gametophyte are haploid, meaning they only have one set of homologous chromosomes. The mature gametophyte produces male or female gametes (or both) by mitosis. The fusion of male and female gametes produces a diploid zygote which develops into a new sporophyte. This cycle is known as alternation of generations or alternation of phases.

n the normal course of events, the zygote and sporophyte will have a full double set of chromosomes again. An exception is when a diploid and haploid gamete fuse, resulting in a triploid sporophyte, which will usually be sterile, as dividing three sets of chromosomes into two halves causes complications.

Bryophytes (mosses, liverworts and hornworts) have a dominant gametophyte stage on which the adult sporophyte is dependent on the gametophyte for nutrition. The embryo of the sporophyte develops from the zygote within the female sex organ or archegonium, and in its early development is therefore nurtured by the gametophyte. Because this embryo-nurturing feature of the life cycle is common to all land plants they are known collectively as the Embryophytes.
Most algae have dominant gametophyte generations, but in some species the gametophytes and sporophytes are morphologically similar (isomorphic). An independent sporophyte is the dominant form in all clubmosses, horsetails, ferns, gymnosperms, and angiosperms (flowering plants) that have survived to the present day. Early land plants had sporophytes that produced identical spores (isosporous or homosporous) but the ancestors of the gymnosperms evolved complex heterosporous life cycles in which the spores producing male and female gametophytes were of different sizes, the female megaspores tending to be larger, and fewer in number, than the male microspores.

During the Devonian period several plant groups independently evolved heterospory and subsequently the habit of endospory, in which single megaspores were retained within the sporangia of the parent sporophyte, instead of being freely liberated into the environment as in ancestral exosporous plants. These endosporic megaspores contained within them a miniature multicellular female gametophyte complete with female sex organs or archegonia containing oocytes which were fertilised by free-swimming sperm produced by windborne miniatuarised male gametophytes in the form of pre-pollen. The resulting zygote developed into the next sporophyte generation while still retained within the pre-ovule, the single large female meiospore or megaspore contained in the modified sporangium or nucellus of the parent sporophyte. The evolution of heterospory and endospory were among the earliest steps in the evolution of seeds of the kind produced by gymnosperms and angiosperms today.